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50 ABSTRACT

51 Aim Mapping the distribution and diversity of plant functionAQ4 is critical for

52 projecting future changes to vegetation under global change. Maps of plant

53 function, however, are scarce due very sparse global trait data matrices. A

54 potential solution to this data limitation is to utilize the known levels of

55 phylogenetic signal in trait data to predict missing values. Here we aim to test

56 existing phylogenetic comparative methods for imputing missing trait data for

57 the purpose of producing continental-scale maps of plant function.

58 Location North America and Europe.

59 Methods Phylogenetic imputation models and trait data from one continent were

60 used to predict the trait values for tree species on the other continent and to produce

61 trait maps. Predicted maps of trait means, variances and functional diversity were

62 compared with known maps to quantify the degree to which predicted trait values

63 could estimate spatial patterns of trait distributions and diversity.

64 Results We show that the phylogenetic signal in plant functional trait data can

65 be used to provide robust predictions of the geographical distribution of tree

66 functional diversity. However, predictions for traits with little phylogenetic

67 signal, such as maximum height, are error prone. Lastly, trait imputation

68 methods based on phylogenetic generalized least squares tended to outperform

69 those based on phylogenetic eigenvectors.

70 Main conclusions It is possible to predict patterns of functional diversity

71 across continental settings with novel species assemblages for most of the traits

72 studied for which we have no direct trait information, thereby offering an

73 effective method for overcoming a key data limitation in global change biology,

74 macroecology and ecosystem modelling.

75 Keywords
76 Forest ecology, imputation, plant biodiversity, phylogeny, temperate forest,

77 trait biogeography.
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INTRODUCTION

81 Theoretical and empirical ecological investigations suggest

82 that strong linkages exist between plant functional diversity

83 and ecosystem function (Tilman et al., 1997; Loreau et al.,

84 2001). The distribution of functional diversity across a vari-

85 ety of spatial scales is therefore of fundamental interest to

86 ecosystem modellers. Quantifying the continental-scale distri-

87 bution of plant functional diversity has, however, been par-

88 ticularly challenging due to limitations in the available

89 species trait data (Reich, 2005; Swenson & Weiser, 2010;

90 Swenson et al., 2012). This lack of information has led eco-

91 system modellers to characterize vegetation types using a few

92 plant functional types, leading to coarse and potentially inac-

93 curate projections of ecosystem function under global climate

94 change (Purves & Pacala, 2008; van Bodegom et al., 2012).

95 The most obvious obstacle to estimating the continental-

96 scale distribution of plant functional diversity is the require-

97 ment for species-level functional trait data that are linked to

98 performance for thousands of species distributed across vast

99 areas, as well as specific knowledge about how such traits are

100 directly or indirectly linked to ecosystem function or persist-

101 ence. It may require many years to collect such data, even in

102 less diverse temperate floras, and much longer in highly

103 diverse tropical floras (Swenson, 2013; Uma~na et al., 2015).

104 A potentially powerful and more easily employed alternative

105 or stopgap measure is to take advantage of phylogenetic sig-

106 nal in functional traits (i.e. the tendency for closely related

107 species to have similar trait values) to estimate the function

108 of individual species. Plant ecologists have demonstrated a

109 large degree of phylogenetic signal in global-scale studies of

110 plant functional traits (e.g. Moles et al., 2005; Swenson &

111 Enquist, 2007), suggesting that reasonable estimates of trait

112 values for species that are absent in global databases may be

113 possible based on their phylogenetic position. Specifically,

114 phylogenetic imputation, in which a model of trait evolution

115 is applied to a phylogeny to estimate the missing trait values

116 for species, holds tremendous promise (Swenson, 2014a).

117 However, these methods have not yet been applied to large

118 plant trait databases nor have they been used to predict the

119 spatial distribution of multiple traits across continents or to

120 predict the distribution of functional diversity itself.

121 Here, we show that phylogenetic information can be used

122 to generate robust predictions of the distribution of individ-

123 ual functional traits and the overall functional diversity of

124 tree assemblages on continental scales. The analyses focus on

125 using phylogenetic generalized least squares (pGLS) regres-

126 sion and phylogenetic eigenvector regression to evaluate phy-

127 logenetic signal in available trait data from one continent

128 and to estimate the functional trait values of individual spe-

129 cies on another continent based upon their phylogenetic

130 position (Martins & Hansen, 1997; Garland & Ives, 2000;

131 Swenson, 2014a,b). The analyses were conducted using the

132 geographical distribution of tree species in eastern North

133 America and Europe, a phylogenetic tree of these species and

134 data for four key functional traits (leaf size, maximum

height, seed mass and wood density) for all species. The spe-

cific questions we ask are: (1) can the mean and variance of

individual traits and multivariate functional diversity of tree

species on one continent be predicted by simply knowing the

traits and phylogenetic positions of a different set of species

on a different continent; (2) does a lack of detailed phyloge-

netic information within genera greatly hinder predictive

models; and (3) do alternative phylogenetic regression mod-

els, such as those built using phylogenetic eigenvectors, pro-

vide robust predictions of the distribution and diversity of

plant function across continents?

MATERIALS AND METHODS

Geographical data

Geographical range maps for 273 eastern North American

and 121 European tree species were used in this study (we

defined a ‘tree’ as any free-standing woody plant with a max-

imum height greater than 10 m). Tree species in these two

regions that did not have trait data available in the literature

were not included in the study. The eastern North American

tree range maps were downloaded from the United States

Geological Survey (http://esp.cr.usgs.gov/data/little/) and

gridded into 18 squares. The European tree range data were

digitized from the Atlas Flora Europaeae (http://www.luo-

mus.fi/english/botany/afe/) and were gridded using the atlas’s

map grid system where grid cells are 50 km2 on average. The

two tree floras used are well known for their compositional

similarity, making them a probable ‘best case scenario’ for

phylogenetic imputation. Specifically, 72.7% of the genera in

our European data set are in the North American data set

and 25.2% of the North American genera are in our Euro-

pean data set.

Phylogenetic tree

A single phylogenetic tree was generated for this study using

the eco-informatics software Phylocom (Webb & Donoghue,

2005). Specifically, we used the Phylocom R20100701.new

backbone phylogeny and our species list to produce a phy-

logeny. Generally, the degree of relatedness between species

within genera was left unresolved using this approach (i.e. all

congeneric species pairs were treated as equally related). We

used this approach to generate the phylogenetic tree because

it is likely to be the approach most widely employed by ecol-

ogists in the future attempting to predict trait data on conti-

nental scales, particularly in geographical regions where DNA

sequences for most species are unavailable (e.g. tropical

floras).

Trait data

This study utilized data for four traits that indicate where a

species falls along the spectrum of plant ecological strategies

(e.g. Grubb, 1977; Dolph & Dilcher, 1980; Chave et al., 2009;

Moles et al., 2009). These traits were also used because they

are widely available, allowing for model testing. The traits we
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135 considered were maximum height, seed mass, wood density

136 and leaf size, and were recorded for every species (i.e. there

137 were no missing trait values for any species or trait). The

138 maximum height data came from the literature where we

139 recorded the absolute largest value reported (Britton & Sha-

140 fer, 1923; Polunin, 1976) and the United States Department

141 of Agriculture PLANTS database (http://plants.usda.gov). The

142 wood density data came from the global wood density data-

143 base published by Chave et al. (2009) and from additional

144 literature sources (Iatsenko-Khmelevski, 1954; Bosshard,

145 1974). Leaf area was estimated as the product of the reported

146 leaf length, leaf width and 0.70 to account for leaf tapering.

147 This calculation has recently been shown to produce values

148 that are highly correlated with the known area of leaves

149 (Kraft et al., 2008) and represents a pragmatic approach for

150 estimating leaf area for hundreds of species from the litera-

151 ture. For some species, the leaf length and/or width was not

152 available in the literature and was recorded by N.G.S. using

153 herbarium specimens in the Gray Herbarium at Harvard

154 University and the Michigan State University Herbarium.

155 Because the degree of leaf shrinkage across these taxa was not

156 known and leaves could not be rehydrated we retained the

157 dry dimensions. We expect that this introduced error is mini-

158 mal given the total variation in leaf size in our data set and

159 would probably bias towards weaker predictions. Seed mass

160 was recorded from the Kew Millennium Seed Database

161 (http://data.kew.org/sid/) and the PLANTS database. An

162 additional 15 species had their seed masses quantified using

163 seeds stored with herbaria sheets at the Michigan State

164 University Herbarium by N.G.S. The maximum height,

165 leaf size and seed mass data were all log transformed for

166 the downstream analyses given their highly skewed global

167 distributions.

168 Phylogenetic generalized least squares regression

169 We used pGLS regression to model the trait data for species

170 on one continent given their phylogenetic position and the

171 phylogenetic distribution of traits for species on the second

172 continent. A pGLS regression can incorporate the phyloge-

173 netic non-independence of data points by assuming a phylo-

174 genetic error structure given a model of trait evolution. In

175 the simplest case, a Brownian motion model of trait evolu-

176 tion can be assumed in which the error structure takes the

177 form of an untransformed phylogenetic variance–covariance

178 (VCV) matrix where the diagonal is the root to tip distance

179 and the off-diagonal elements are the amounts of shared

180 branch length between two taxa. This basic model can

181 become more flexible by fitting a model of trait evolution

182 given the data by transforming the phylogenetic VCV matrix

183 and finding the transformation that best fits the data (Swen-

184 son, 2014a,b). For example, if the data have no evident phy-

185 logenetic signal (i.e. non-independence) the transformation

186 of the off-diagonal values in the VCV matrix that would best

187 fit the data would be to multiply the values by zero. Simi-

188 larly, if the data are best explained by a Brownian motion

189model the transformation that would best fit the data would

190be to multiply the off-diagonal elements by one. The values

191by which the off-diagonal elements are multiplied are

192referred to as k. We utilized maximum likelihood to estimate

193the k values (Pagel, 1999; Freckleton et al., 2002) using the R

194package ‘caper’ (http://caper.r-forge.r-project.org/) for each

195trait on each continent and generated a GLS regression

196model for that trait using the estimated phylogenetic error

197structure (i.e. the transformed phylogenetic VCV matrix;

198Swenson, 2014a,b). This model and the transformed VCV

199matrix containing all species on both continents were then

200used to predict the trait values of species on the other conti-

201nent given the model from first continent. To assess the

202degree to which the predicted species-level values were

203related to the known values we regressed the predicted values

204against the known values.

205Next, the predicted values were then used to quantify the

206mean and variance of traits in map grid cells on each conti-

207nent as well as the multivariate functional dispersion (FDis)

208and functional richness (FRic) in those grid cells. The FDis is

209the mean distance of each species to the centroid of the mul-

210tivariate trait space and the FRic is the volume of the multi-

211variate trait space that an assemblage occupies (Laliberte &

212Legendre, 2010). These values were then compared with the

213known values using a regression.

214A simple alternative to estimating the most likely k values

215for a given trait dataset and phylogeny is just to assume that

216traits evolve under a Brownian motion model. For example,

217a Brownian motion model could be assumed where the phy-

218logenetic VCV matrix is left untransformed (i.e. k 5 1). We

219generated these models for each trait on each continent and

220used the models and an untransformed phylogenetic VCV

221matrix containing all species to predict the trait values on

222the other continent. As with the previous analysis, we then

223regressed predicted trait values for species against their

224known values. Then, the predicted values were used to quan-

225tify the mean and variance of traits in map grid cells on each

226continent as well as the multivariate FDis and FRic in those

227grid cells.

228Phylogenetic eigenvector regression

229In addition to the two pGLS approaches used to predict trait

230values, we utilized phylogenetic eigenvectors to predict trait

231values, which assume no model of trait evolution – Brownian

232motion or otherwise. To accomplish this, a phylogenetic dis-

233tance matrix was computed from the phylogeny and used in

234a principal coordinate analysis to generate phylogenetic

235eigenvectors (Diniz-Filho et al., 1998; Ramirez et al., 2008;

236Diniz-Filho et al., 2011). The number of phylogenetic eigen-

237vectors produced is equal to the number of species minus

238one. A subset of eigenvectors must be selected for phyloge-

239netic eigenvector regression because the use of all eigenvec-

240tors leads to model saturation (Rohlf, 2001). We utilized an

241iterative search for the subset of eigenvectors that reduces the

242largest amount of autocorrelation in the residuals (Griffith &
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243 Peres-Neto, 2006; Diniz-Filho et al., 2012). Specifically, as

244 new eigenvectors were added to the model for a single trait

245 on a single continent, residual autocorrelation was recalcu-

246 lated and the iterative search stopped until the residual auto-

247 correlation calculated using Moran’s I was less than 0.05. The

248 selected eigenvector values for species on one continent were

249 then used as independent variables in a multiple linear model

250 with the data for a single trait from the same continent as

251 the dependent variable. This model was then projected onto

252 the values for the species on the other continent from the

253 same subset of eigenvectors. This process was repeated for

254 each trait to produce predicted trait values on one continent

255 given the trait data on the other continent and their phyloge-

256 netic eigenvector positions. The R package ‘PVR’ was used

257 for all phylogenetic eigenvector analyses (http://cran.r-project.

258 org/web/packages/PVR/). Again, the predicted species-level

259 trait values were regressed onto the known values through

260 the origin and the coefficient of determination was recorded.

261 Next, the predicted trait values derived from this phyloge-

262 netic eigenvector approach were then used to quantify the

263 mean and variance of traits in map grid cells on each conti-

264 nent as well as the multivariate FDis and FRic in those grid

265 cells. These values were then compared with the known

266 values.

267 Prediction error and climate

268 Deviations of the predicted map grid cell values from the

269 ‘known’ values may be linked to climate. We therefore per-

270 formed a series of ad hoc tests in which we first quantified

271 the deviation of the predicted values from the known values

272 (i.e. known value minus the predicted value) and correlated

273 these values with four climatic variables for the same grid

274 cell. Specifically, we used Pearson correlations to evaluate the

275 relationships between the deviations and mean annual tem-

276 perature, temperature seasonality, annual precipitation and

277precipitation seasonality using climate maps from the World-

278Clim database (Hijmans et al., 2005) at a resolution of 2.58.

279RESULTS

280We utilized three phylogenetic imputation methods to pre-

281dict the trait values of species in one region (eastern North

282America or Europe) based upon their phylogenetic position

283and the traits and the phylogenetic position of species in the

284other region. We used the predicted values to map the mean

285and variance of each trait and to estimate two multivariate

286functional diversity indices in the map grid cells in each

287region. We began by testing the pGLS regression with a fit

288model of trait evolution. The predicted trait means, FDis and

289FRic in map grid cells in the projection region based on trait

290information in the calibration region and phylogenetic infor-

291mation were typically highly correlated (r2> 0.60; Table T11,

292Figs F11 & F22). The predicted trait variances in map grid cells

293were also highly correlated with the known variances

294(r2> 0.60; Table 1). However, predictions of the mean and

295variance of maximum height values for the map grid cells

296were far weaker (r2 � 0.1–0.3) indicating that the lability in

297the evolution of this trait prevented strong predictions even

298when k was estimated and used to fit the model. The geo-

299graphical locations that were the most difficult to predict in

300Europe were typically in the south-east (Figs 1 & 2). Simi-

301larly, the more species-rich south-eastern portion of eastern

302North America was the region hardest to predict, probably

303due to the higher number of congeners and the greater num-

304ber of species that may be distantly related from the dataset

305used to build the statistical model.

306To explore whether alternative phylogenetic prediction

307frameworks provided similarly strong predictions we took

308two additional approaches. First, we did not use maximum

309likelihood to estimate k values in the pGLS model. Rather,

310we used the observed phylogenetic VCV matrix in the pGLS

Table 1 We used phylogenetic generalized least squares (pGLS) regression to estimate a model of trait evolution (k) using the trait data

from one continent to predict the trait values for species on the other continent. The table shows the intercept and slope of each regres-

sion with their standard errors (SE) and r2. We also report the k values estimated by our pGLS models where values closer to one

indicate more phylogenetic signal and values closer to zero indicate less phylogenetic signal.

Eastern North America prediction of European traits

European prediction of eastern North American

traits

Map grid cell value Intercept SE Slope SE r2 k Intercept SE Slope SE r2 k

Mean maximum height (m) 1.13 0.01 0.16 0.01 0.28 0.68 1.39 0.01 20.02 0.01 0.10 0.65

Variance maximum height (m) 0.02 < 0.00 20.07 0.01 0.14 0.68 0.02 < 0.00 20.11 0.01 0.15 0.65

Mean leaf size (cm2) 20.09 0.01 1.17 0.01 0.87 0.96 0.17 0.01 0.59 0.02 0.76 0.98

Variance leaf size (cm2) 20.03 < 0.00 0.94 0.01 0.92 0.96 20.02 0.01 0.63 0.01 0.88 0.98

Mean seed mass (g) 0.13 < 0.00 0.79 < 0.00 0.97 0.99 0.41 0.01 0.82 0.01 0.92 0.89

Variance Seed Mass (g) 0.16 0.01 0.64 0.01 0.87 0.99 0.59 0.01 0.30 0.02 0.42 0.89

Mean wood density (g cm23) 0.01 < 0.00 0.97 0.01 0.93 0.85 20.02 0.01 1.04 0.02 0.99 0.85

Variance wood density (g cm23) 0.01 < 0.00 0.12 0.01 0.30 0.85 < 0.00 < 0.00 0.20 0.02 0.38 0.85

Functional dispersion 0.46 0.03 0.77 0.01 0.44 – 0.10 0.03 1.10 0.01 0.84 –

Functional richness 3.67 0.10 0.62 0.01 0.66 – 4.29 0.16 0.81 0.02 0.80 –

J_ID: GEB Customer A_ID: GEB12559 Cadmus Art: GEB12559 Ed. Ref. No.: GEB-2015-0296.R4 Date: 7-December-16 Stage: Page: 4

ID: geethapriya.p Time: 12:21 I Path: w:/JW-GEB#160153

N. G. Swenson et al.

4 Global Ecology and Biogeography, 00, 00–00, VC 2016 John Wiley & Sons Ltd

http://cran.r-project.org/web/packages/PVR
http://cran.r-project.org/web/packages/PVR


0.31 - 0.54

0.55 - 0.66

0.67 - 0.74

0.75 - 0.83

0.84 - 0.91

0.92 - 1.12

Mean log(Leaf Size)

0.17 - 0.57

0.58 - 0.86

0.87 - 1.10

1.11 - 1.34

1.35 - 1.63

1.64 - 2.15

Mean log(Seed Mass)

0.50 - 0.53

0.54 - 0.55

0.56 - 0.57

0.58 - 0.59

0.60 - 0.62

0.63 - 0.69

Mean Wood density

1.13 - 1.23

1.24 - 1.29

1.3 - 1.34

1.35 - 1.38

1.39 - 1.41

1.42 - 1.47

Mean log(Maximum Height)

Figure 1 The known (left) and predicted (middle) trait means in map grid cells for European trees. Deviations (right) where the

predicted values were subtracted from the known value are also plotted. The top row is mean maximum height (log m), the second row

is mean leaf size (log cm2), the third row is mean seed mass (log g) and the fourth row is mean wood density (g cm23). The predicted

values were generated by fitting a model of trait evolution for maximum height, leaf size, seed mass and wood density for eastern North

American trees and using that model to predict the trait values of European tree species based on their phylogenetic position. The

colour legends are provided on the right side of each row with the top legend corresponding to the maps in the first two columns

(i.e. the trait means) and the bottom legend to the map in the last column (i.e. the deviations).
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311 model, effectively assuming a k value of one (i.e. Brownian

312 motion trait evolution) for every trait dataset (TableT2 2). Sec-

313 ond, we utilized a phylogenetic eigenvector regression that

314 does not fit a model of trait evolution (TableT3 3). The results

315 from both pGLS approaches were qualitatively similar (Tables

316 1 & 2) where strong predictions were possible for most traits,

317 with the notable exception of maximum height. The phyloge-

318 netic eigenvector predictions were less robust, with some

319 traits having strong predictions (e.g. leaf area and seed

320 mass); wood density and maximum height predictions were

321 less strong (Table 3).

322 Lastly, we quantified the correlation between four climatic

323 variables and deviations of the predicted values from known

324 values for map grid cells on both continents. We found that

325 deviations were nearly always correlated with the four

326 climatic variables (Tables S1 & S2 in the Supporting Infor-

327 mation). The correlations were generally stronger for

328 temperature-related variables than for precipitation-related

329variables. The geographical signature in the deviations for

330Europe can be seen in Fig. 1, indicating that in the study sys-

331tem the major deviations generally occur at the extremes of

332latitude.

333DISCUSSION

334Mapping the distribution and diversity of plant function AQ5on

335continental scales is a fundamental goal in biogeography and

336ecosystem ecology (Reich, 2005; Swenson & Weiser, 2010;

337Swenson et al., 2012). A key limitation to progress is that

338most large plant trait databases are highly sparse (Kattge

339et al., 2011) so probably making most efforts at functional

340trait mapping prone to large error. While waiting for more

341data to accumulate, a pragmatic way forward may be to

342impute or estimate the missing trait values in existing data-

343bases. These estimates could be strengthened by incorporat-

344ing phylogenetic information (Swenson, 2014a; Schrodt et al.,

Functional Richness

0.54 - 4.83

4.84 - 7.46

7.47 - 10.09

10.10 - 12.33

12.34 - 14.51

14.52 - 16.88

Figure 2 The multivariate functional richness (FRic) quantified using the known trait data (left) and the predicted trait data (right) for

European trees. The predicted values were generated by fitting a model of trait evolution for maximum height, leaf size, seed mass and

wood density for eastern North American trees and using that model to predict the trait values of European tree species based on their

phylogenetic position. The known and predicted FRic values are highly correlated (r2 5 0.964) with a lower than expected root mean

squared error (RMSE 5 1.944; P< 0.05).
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345 2015). This is because some plant functional traits of interest

346 are known to have a phylogenetic signal in global datasets

347 (e.g. Moles et al., 2005; Swenson & Enquist, 2007). The goal

348 of the present work was to implement and test the ability of

349 phylogenetic imputation methods to predict the distribution

350 and diversity of plant functional traits on continental scales.

351 Here, we have shown that robust predictions of individual

352 trait distributions and the overall functional diversity within

353 map grid cells can be predicted among novel continental set-

354 tings simply by taking advantage of the phylogenetic signal

355 in trait data from another continent. The three approaches

356 to phylogenetic imputation used here all were able to predict

357 a large amount of the variance in trait distributions at the

358 species and map grid cell levels (Tables 1–3). However, the

359two pGLS regression-based approaches explained more var-

360iance than phylogenetic eigenvector regression-based meth-

361ods. Thus, even when setting aside conceptual debates

362regarding eigenvector approaches (e.g. Rohlf, 2001), these

363methods tended to perform well, but not as well as pGLS.

364The two pGLS approaches yielded similar results in this

365study, but it is expected that in many cases trait evolution

366will not as closely approximate a Brownian motion model

367and the pGLS approach fitting a k value will be more reli-

368able. More work is needed, using larger empirical and simu-

369lated datasets, (Swenson, 2014a) to confirm or reject this

370general recommendation.

371The phylogenetic imputation methods were able to make

372strong predictions of the spatial distribution of traits, but the

Table 2 In this table we do not estimate a model of trait evolution, rather we assume a Brownian motion model of trait evolution

(k 5 1) and phylogenetic generalized least squares. The predicted trait values and species distribution maps were then used to calculate

the predicted mean and variance of each trait value and the predicted multivariate functional dispersion and functional richness value in

map grid cells on each continent. The predicted mean, variance, functional dispersion and functional richness values were regressed onto

the known values. The table gives the intercept and slope of each regression with their standard errors (SE) and the r2.

Eastern North America prediction of European traits

European prediction of eastern North American

traits

Map grid cell value Intercept SE Slope SE r2 Intercept SE Slope SE r2

Mean maximum height (m) 1.13 0.01 0.162 0.01 0.18 1.33 0.01 0.026 0.01 0.11

Variance maximum height (m) 0.02 < 0.00 20.068 0.01 0.14 0.02 < 0.00 20.118 0.01 0.18

Mean leaf size (cm2) 20.09 0.01 1.174 0.01 0.88 0.17 0.01 0.604 0.01 0.77

Variance leaf size (cm2) 20.03 < 0.00 0.942 0.01 0.93 20.02 0.01 0.631 0.01 0.88

Mean seed mass (g) 0.13 < 0.00 0.794 < 0.00 0.98 0.28 0.01 0.907 0.01 0.91

Variance seed mass (g) 0.10 0.01 0.641 0.01 0.88 0.68 0.02 0.316 0.02 0.41

Mean wood density (g cm23) 0.01 < 0.00 0.973 0.01 0.93 20.03 0.01 1.076 0.02 0.99

Variance wood density (g cm23) 0.01 < 0.00 0.117 0.01 0.26 0.01 < 0.00 0.243 0.02 0.30

Functional dispersion 0.46 0.02 0.767 0.01 0.44 0.07 0.02 1.121 0.01 0.88

Functional richness 3.67 0.09 0.619 0.01 0.67 4.16 0.15 0.786 0.01 0.81

Table 3 We used phylogenetic eigenvector regression using the trait data from one continent to predict the trait values for species on

the other continent. The predicted trait values and species distribution maps were then used to calculate the predicted mean and var-

iance of each trait value and the predicted multivariate functional dispersion and functional richness value in map grid cells on each

continent. The predicted mean, variance, functional dispersion and functional richness values were regressed onto the known values

through the origin. This table shows the intercept and slope of each regression with their standard errors (SE) and the r2.

Eastern North America prediction of European traits

European prediction of eastern North American

traits

Map grid cell value Intercept SE Slope SE r2 Intercept SE Slope SE r2

Mean maximum height (m) 1.26 0.01 0.06 0.01 0.11 1.33 0.01 0.01 0.01 0.08

Variance maximum height (m) 0.01 < 0.00 20.05 0.01 0.11 0.01 < 0.00 20.06 0.01 0.11

Mean leaf size (cm2) 20.17 0.01 1.16 0.01 0.75 0.27 0.01 0.53 0.02 0.63

Variance leaf size (cm2) 0.02 0.01 0.76 0.01 0.46 0.41 0.02 0.43 0.02 0.46

Mean seed mass (g) 0.36 < 0.00 0.73 < 0.00 0.96 1.03 0.01 0.43 0.02 0.52

Variance seed mass (g) 20.08 0.01 0.60 0.01 0.81 0.65 0.03 0.18 0.01 0.11

Mean wood density (g cm23) 0.22 0.01 0.60 0.02 0.51 0.03 0.02 0.96 0.04 0.93

Variance wood density (g cm23) < 0.00 < 0.00 0.04 0.01 0.15 0.01 < 0.00 20.06 0.01 0.09

Functional dispersion 0.09 0.03 0.85 0.01 0.44 0.21 0.03 0.92 0.02 0.69

Functional richness 0.44 0.15 0.90 0.01 0.65 21.26 0.56 1.88 0.02 0.64
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373 northern- and southernmost portions of both regions were

374 where the methods performed worst (Figs 1 & 2). This is

375 particularly evident when we consider the strong relation-

376 ships between temperature variables and the deviation of pre-

377 dicted values from known values (Tables S1 & S2). One

378 reason for this may be the tendency of the methods to

379 under-represent trait divergences due to habitat differences

380 within a clade and an over-averaging of trait data leading to

381 higher deviations in more extreme climates within clades.

382 Future work may be able to remedy this bias by either incor-

383 porating climatic information into the species-level trait pre-

384 dictions or adjusting predicted species-level values in map

385 grid cells or the assemblage-level trait or diversity values

386 based upon climate, but such work is beyond the scope of

387 the present paper. A second reason is that these regions con-

388 tain a greater number of species from different parts of the

389 phylogenetic tree. In other words, the distance between a

390 data point used to build the statistical model and a species

391 in these regions will increase. This is particularly the case

392 when building a model on one continent and projecting it to

393 another where it is likely that many genera in the species-

394 rich regions on the continent to be predicted are not found

395 on the continent used to build the model.

396 This study focused on four functional traits commonly

397 used in trait-based ecology and readily available in the litera-

398 ture. Two of these traits, wood density and seed mass, are

399 known to have a great deal of phylogenetic signal (Moles

400 et al., 2005; Swenson & Enquist, 2007), meaning that phylo-

401 genetic imputation methods are likely to be very successful.

402 Indeed, we found this to be the case at the species and map

403 grid cell levels (Tables 1–3). The phylogenetic signal in the

404 other two traits, maximum height and leaf size, has not been

405 as well scrutinized in the literature at global scales. Maximum

406 height was found to have much less phylogenetic signal than

407 the other traits, but leaf size had a similar degree of phyloge-

408 netic signal to seed mass and wood density (Table 1). The

409 outcome of this was that predictions of maximum height dis-

410 tributions were far less reliable than those of leaf size distri-

411 butions (Tables 1–3).

412 Considerations for future implementation of

413 phylogenetic imputation

414 It may seem surprising that our phylogenetically based

415 approach is able to predict the observed geographical pat-

416 terns so strongly. We expect that some of this success is due

417 to the fact that the two tree floras are very similar in their

418 familial and generic compositions. Thus, the average phyloge-

419 netic distance between a training trait data point and a pre-

420 dicted trait data point is relatively low and represents

421 perhaps a best-case scenario. In other words, projecting the

422 traits of another flora with a very different phylogenetic com-

423 position (e.g. the Amazon) from European data would be

424 likely to result in much more error. Indeed, we found evi-

425 dence of this to a smaller degree when we consider that less

426 variation in eastern North America could be predicted using

427the smaller European flora than vice versa AQ6(e.g. Table 1).

428Additionally, the methods used are regressions and extrapola-

429tions of these models, so will more likely than not introduce

430large errors. In the present study, the bounds of the data in

431each region are roughly similar, but if one region lacked, for

432example, gymnosperms there would be a highly increased

433potential for error. Taken together, future work will have to

434closely consider the phylogenetic compositions of the training

435data set and the species set to be predicted. Some of the

436potential for error could be mitigated by using the largest

437trait datasets available (e.g. Kattge et al., 2011; Schrodt et al.,

4382015) such that phylogenetic extrapolation does not occur

439and the predicted trait values can stay within reasonable

440bounds.

441Another consideration arising from this study is that we

442only considered four traits that, while being of interest to

443ecologists, do not represent the entirety of the traits that

444ecologists are interested in mapping. For example, earth sys-

445tem modellers are likely to be more interested in leaf gas

446exchange rates that may be highly variable within families

447and genera (i.e. have little phylogenetic signal; see van Bode-

448gom et al., 2012). Such traits may approximate the situation

449we encountered with maximum height where predictions are

450not as strong, and this would propagate error once aggre-

451gated into things like global dynamic vegetation models.

452Thus, an important question will be the degree to which the

453error introduced via phylogenetic imputation is less or more

454than the error introduced by lumping species into a few dis-

455crete functional types.

456Next, the present study found strong relationships between

457climate and deviations from prediction AQ7s. Each of the meth-

458ods used could incorporate climatic information by quantify-

459ing the average climate for each species and using this

460information as an additional independent variable in the

461model, such that phylogenetic signal and trait–climate rela-

462tionships are simultaneously used to predict missing trait val-

463ues. It is expected that such models will strengthen trait

464predictions, particularly when phylogenies with no resolution

465within genera are utilized. An alternative approach could be

466adjusting post hoc the grid cell values for assemblages by cli-

467mate, but this approach may be more arbitrary and unreli-

468able. More detailed future models may also seek to model

469population-level response to climate hierarchically, which

470may help refine predictions of traits that are very sensitive to

471local abiotic conditions (e.g. gas exchange). However, to our

472knowledge, such phylogenetically explicit methods that model

473trait evolution along branch lengths have not yet been

474developed.

475Lastly, it is worth highlighting again that the proposed

476methods are meant to serve as a pragmatic approach to esti-

477mating trait values given the current circumstances. Without

478a doubt we would prefer that trait values were actually meas-

479ured than predicted, and future trait collection campaigns,

480particularly in under-sampled regions like the tropics, should

481remain a priority. Further, as previously noted (see Swenson,

4822014a), while the biases or errors introduced by phylogenetic
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483 imputation may be tolerable on very large scales, using

484 imputed values for local-scale studies or community ecology

485 would be likely to introduce levels of error that would not be

486 tolerable. Thus, we are not recommending the use of these

487 methods for trait-based community ecology.

488 CONCLUSIONS

489 In recent years plant ecologists and evolutionary biologists

490 have made tremendous advances by generating and analysing

491 large plant trait databases (Kattge et al., 2011) and large phy-

492 logenetic trees (Webb & Donoghue, 2005). We suggest that

493 these advances can now be leveraged to produce phylogeneti-

494 cally based predictions of the continental-scale distribution

495 and the diversity of plant function, even into areas with

496 novel sets of species. This predictive power will be crucial in

497 a future where climate change and species introductions will

498 increasingly generate novel assemblages. Importantly these

499 predictions may be the most pragmatic way for ecosystem

500 modellers to incorporate functional diversity within and

501 among map grid cells into their models and move beyond

502 using a singular plant functional type to represent all vegeta-

503 tion within a region, and to do so even for less-studied

504 regions with many species for which we have little direct trait

505 information.
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