Representative publications
      Examples
      Reprints
       
 
Five examples of research papers
 
     
  Paper 2  
 
Valladares, F., M. T. Allen, and R. W. Pearcy. 1997. Photosynthetic response to dynamic light under field conditions in six tropical rainforest shrubs occurring along a light gradient. Oecologia 111: 505-514.
 
     
 
We examined in the field the photosynthetic utilization of fluctuating light by six neotropical rainforest shrubs of the family Rubiaceae. They were growing in three different light environments: forest understory, small gaps, and clearings. Gas exchange techniques were used to analyse photosynthetic induction response, induction maintenance during low-light periods, and lightfleck (simulated sunfleck) use efficiency (LUE). Total daily photon flux density (PFD) reaching the plants during the wet season was 37 times higher in clearings than in the understory, with small gaps exhibiting intermediate values. Sunflecks were more frequent, but shorter and of lower intensity in the understory than in clearings. However, sunflecks contributed one-third of the daily PFD in the understory. Maximum rates of net photosynthesis, carboxylation capacity, electron transport, and maximum stomatal conductance were lower in understory species than in species growing in small gaps or clearings, while the reverse was true for the curvature factor of the light response of photosynthesis. No significant differences were found in the apparent quantum yield. The rise of net photosynthesis during induction after transfer from low to high light varied from a hyperbolic shape to a sigmoidal increase. Rates of photosynthetic induction exhibited a negative exponential relationship with stomatal conductance in the shade prior to the increase in PFD. Leaves of understory species showed the most rapid induction and remained induced longer once transferred to the shade than did leaves of medium- or high-light species. LUE decreased rapidly with increasing lightfleck duration and was affected by the induction state of the leaf. Fully induced leaves exhibited LUEs up to 300% for 1-s lightflecks, while LUE was below 100% for 1-80 s lightflecks in uninduced leaves. Both induced and uninduced leaves of understory species exhibited higher LUE than those of species growing in small gaps or clearings. However, most differences disappeared for lightflecks 10 s long or longer. Thus, understory species, which grew in a highly dynamic light environment, had better capacities for utilization of rapidly fluctuating light than species from habitats with higher light availability.


Sunfleck hitting part of the crown of an understory shrub (Psychotria acuminata) in the tropical rainforest of Panamá
 
     
   
     
Prof. Dr. Fernando Valladares Museo Nacional de Ciencias Naturales CSIC .
Serrano 115 dpdo.E-28006 Madrid. Spain
Phone 34 917452500 ext 988120. Fax 34 915640800
e-mail: [email protected]
 
Creación web: Wainadur Paginas Web